Three-Dimensional Green’s Functions in an Anisotropic Half-Space With General Boundary Conditions

نویسنده

  • E. Pan
چکیده

This paper derives, for the first time, the complete set of three-dimensional Green’s functions (displacements, stresses, and derivatives of displacements and stresses with respect to the source point), or the generalized Mindlin solutions, in an anisotropic half-space ~z.0! with general boundary conditions on the flat surface z50. Applying the Mindlin’s superposition method, the half-space Green’s function is obtained as a sum of the generalized Kelvin solution (Green’s function in an anisotropic infinite space) and a Mindlin’s complementary solution. While the generalized Kelvin solution is in an explicit form, the Mindlin’s complementary part is expressed in terms of a simple line-integral over [0,p]. By introducing a new matrix K, which is a suitable combination of the eigenmatrices A and B, Green’s functions corresponding to different boundary conditions are concisely expressed in a unified form, including the existing traction-free and rigid boundaries as special cases. The corresponding generalized Boussinesq solutions are investigated in details. In particular, it is proved that under the general boundary conditions studied in this paper, the generalized Boussinesq solution is still well-defined. A physical explanation for this solution is also offered in terms of the equivalent concept of the Green’s functions due to a point force and an infinitesimal dislocation loop. Finally, a new numerical example for the Green’s functions in an orthotropic half-space with different boundary conditions is presented to illustrate the effect of different boundary conditions, as well as material anisotropy, on the half-space Green’s functions. @DOI: 10.1115/1.1532570#

منابع مشابه

Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...

متن کامل

Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure

The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003